Generalized power domination: propagation radius and Sierpiński graphs
نویسنده
چکیده
The recently introduced concept of k-power domination generalizes domination and power domination, the latter concept being used for monitoring an electric power system. The k-power domination problem is to determine a minimum size vertex subset S of a graph G such that after setting X = N [S], and iteratively adding to X vertices x that have a neighbour v in X such that at most k neighbours of v are not yet in X , we get X = V (G). In this paper the k-power domination number of Sierpiński graphs is determined. The propagation radius is introduced as a measure of the efficiency of power dominating sets. The propagation radius of Sierpiński graphs is obtained in most of the cases.
منابع مشابه
Heredity for generalized power domination
In this paper, we study the behaviour of the generalized power domination number of a graph by small changes on the graph, namely edge and vertex deletion and edge contraction. We prove optimal bounds for γP,k(G − e), γP,k(G/e) and for γP,k(G − v) in terms of γP,k(G), and give examples for which these bounds are tight. We characterize all graphs for which γP,k(G− e) = γP,k(G) + 1 for any edge e...
متن کاملPower domination in some classes of graphs
The problem of monitoring an electric power system by placing as few phase measurement units (PMUs) in the system as possible is closely related to the well-known domination problem in graphs. The power domination number γp(G) is the minimum cardinality of a power dominating set of G. In this paper, we investigate the power domination problem in Mycielskian and generalized Mycielskian of graphs...
متن کاملGeneralized power domination of graphs
In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...
متن کاملGeneralized Sierpiński graphs
Sierpiński graphs, S(n, k), were defined originally in 1997 by Klavžar and Milutinović. The graph S(1, k) is simply the complete graph Kk and S(n, 3) are the graphs of Tower of Hanoi problem. We generalize the notion of Sierpiński graphs, replacing the complete graph appearing in the case S(1, k) with any graph. The newly introduced notion of generalized Sierpiński graphs can be seen as a crite...
متن کاملPower domination in cylinders, tori, and generalized Petersen graphs
A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the c...
متن کامل